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Fac. Cs. Exactas y Naturales, Universidad de Buenos Aires

Pab. 1, Ciudad Universitaria, Buenos Aires
Argentina

December 4, 2014

Abstract

We describe the Hochschild (co)homology groups of the associative algebra Ψn of
pseudodifferential symbols in n ≥ 1 independent variables. We prove in particular
that the first Hochschild (co)homology group HH1(Ψn) is 2n- dimensional. Also, we
give an elementary calculation of the first Lie (co)homology group H1

Lie(Ψn) of Ψn

equipped with the Lie bracket induced by its associative algebra structure.

1 Introduction

The algebra of pseudodifferential symbols in one variable is a standard object in the the-
ory of integrable systems, see for instance [Di, KW]. In the case of pseudodifferential
symbols in several variables there is a far less extensive literature. We mention the papers
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by Dzhumadil´daev [D], and Parshin [P] and the classical work by Wodzicki [Wod]. It is
known that in the case of one variable there is exactly one central extension for the Lie al-
gebra of pseudodifferential symbols, see [F] and [KW], and it has been also observed that
this central extension is of interest for integrable systems, see for instance the classical note
[RS] and treatise [KW]. In this paper we investigate the existence and classification of ex-
terior derivations for the case of n independent variables, that is, we compute HH1(Ψn),
and then we consider the classification of central extensions of Ψn as a Lie algebra. Our
calculations (in the Lie algebra case) provide an essential simplification of the work [D]
on the Lie algebra cohomology of Ψn. Thus, our work can be useful for the construction
of integrable systems in an arbitrary number of independent variables. We believe that
this is interesting because it complements known constructions of integrable systems of
equations in several independent variables such as the KadomtsevPetviashvili hierachy
and their relatives, [Di], the examples of K. Tenenblat and her coworkers [T], and the ex-
amples in Parshin’s paper [P]. In this paper we consider only the algebraic classification
problem. Explicit applications to mathematical physics appear in the companion paper
[BR].

2 Hochschild homology and cohomology of pseudodiffer-
ential operators

2.1 The objects

Let K be a field of characteristic zero. The Weyl algebra, or the algebra of algebraic dif-
ferential operators in affine space can be described as the vector space An = K[{x±i : i =
1, . . . , n}], with the multiplication law determined by the rules

[x+i, x+j] = 0 = [x−i, x−j], [x−i, x+j] = δij .

This algebra acts faithfully on k[x1, . . . , xn] sending x+i to the multiplication by xi, and x−i
to ∂

∂xi
. This algebra is filtered by the order of the differential operators, and it also has the

so-called Berstein filtration, in which a monomial xa1+1 · · ·xan+nx
b1
−1 · · · xbn−n has total degree∑

i ai +
∑

i bi.
We may localize on the x+i’s, or on the x−i’s, but not on both simultaneously, unless

we consider formal series on x−1
±i .

Through this paper, we shall use the usual multi-index notation. Thus, given I =
(i1, ..., in) ∈ Zn, we set xI+ = xi11+ · · ·xinn+ and similarly xJ− = xj11− · · ·x

jn
n−. We write J ≤ M

for M = (m1, ...,mn) ∈ Zn if ji ≤ mi for each i, and write J ≥ 0 for J ≥ (0, ..., 0). Then, the
space of pseudodifferential operator in n variables will mean the following associative
algebra

Ψn =

{ ∑
I,J∈Zn

aIJx
I
+x

J
− : aIJ ∈ K, aIJ = 0 if I, J ≤M for some M ∈ Zn

}
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The multiplication rule may be described by the following formula

FG =
∑
K∈Zn

1

K!
: ∂K− (F )∂K+ (G) :

where F,G ∈ Ψn and ∂k+(xI+) = ikx
I−εk
+ , ∂k−(xJ−) = jkx

J−εk
+ , ∂±(xM∓ ) = 0,

εk = (0, ..., 1, ..., 0) ∈ Zn.

The notation : ? : means normal ordering. For example, if n = 1

∂−(x+x
j
−)∂+(xi+x−) = : jx+x

j−1
− ixi−1

+ x− : = ijxi+x
j
−

It is clear that An ⊂ Ψn is a subalgebra. The algebra Ψn has also two filtrations: one by
“order of differential operator”, namely |xI+xJ−|diff = |J | =

∑
i ji, and also by total degree:

|xI+xJ−|tot = |I| + |J |. We call this total degree the Bernstein filtration. The associated
graded algebra is commutative, we may identify it with Laurent polynomials grΨn =
k[x+1, x

−1
+1, . . . x+n, x

−1
+n, x−1, x

−1
−1, . . . x−n, x

−1
−n]. On the other hand, we note that the algebra

Ψn is complete with respect to the Bernstein filtration.

2.2 Main tools

By a filtered abelian group M we mean a family of subgroups FpM for each p ∈ Z such
that Fp+1M ⊆ FpM for all p, ∪pFpM = M , and 0 = ∩pFpM . In such situation, two notions
of completions M̂ of M , can be considered

• (Algebraic completion) There is a canonical inverse system {M/Fp+1M →M/FpM}p∈Z
and M̂ can be defined using the inverse limit, satisfying certain universal property
that characterize it, but that can also be described explicitly as a sub object of the
product

M̂ := lim
←p

M/Fp = {(mp)p ∈
∏
p∈Z

M/FpM : mp ≡ mp+1∀p}

There is a canonical map M → M̂ given by m 7→ (mp)p where mp = m mod FpM ,
and this map is injective because ∩pFpM = 0.

• (Metric completion) Fix a real number r > 1 and define ||0|| = 0, ||m|| = rp if m ∈
FpM and m /∈ Fp−1M . Notice that a sequence of elements (of M ) m0,m−1,m−2, . . .
with m−i ∈ F−iM verifies ||m−n|| → 0. This adic-norm verifies (a stronger version
of) the triangular inequality

||m+m′|| ≤ max{||m||, ||m′||} ≤ ||m||+ ||m′||

and hence makesM an (ultra)metric space by declaring the distance betweenm and
m′ to be ||m−m′||. Notice that the properties ∪FpM = M and ∩FpM = 0 make ||− ||
a well-defined function and ||m|| = 0 if and only if m = 0. One may define M̂ as the
usual metric completion using classes of Cauchy sequences of M .
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Despite the apparent different approaches, it is standard that both completions yield the
same object (see for instance [L, Theorem 10.1]), the inclusion M → M̂ of the first con-
struction is nothing but viewing M as a dense subset of M̂ .

On several arguments we will use the following standard Lemma of filtered abelian
groups.

Lemma 2.1. Let Z, A, B, C be filtered abelian groups and

Z
h // A

f // B
g // C

a complex of filtered groups (i.e. each morphism preserves the respective filtration). If the induced
sequence

grZ
grh // grA

grf // grB
grg // grC

is exact in A and B, then, the following holds:

1. If the filtrations are bounded below, i.e. if Fp0M = 0 for some p0 ∈ Z (M = A,B,C), then
the original complex

A
f // B

g // C

is exact in B.

2. In the general case, the completion

Â
f̂ // B̂

ĝ // Ĉ

is exact in B.

Recall that a chain map f : (A, ∂A)→ (B, ∂B) between two complexes of abelian groups
is called a quasi-isomorphism if the induced map f∗ : H∗(A)→ H∗(B) is an isomorphism.
An interesting consequence of the lemma 2.1 is the completed version of Künneth for-
mula:

Corollary 2.2. Let A, B, C be completed filtered complexes such that gr(A⊗̂B) = grA ⊗ grB
and let f : C → A⊗̂B a map such that grf : grC → grA⊗ grB is a quasi-isomorphism. Then the
original map is a quasi-isomorphism.

Proof. Recall first the Cone construction. If φ : (X, dX) → (Y, dY ) is a morphism of com-
plexes (with d(Xn) ⊆ Xn+1), then the cone of f is defined as

Cone(φ)n = Xn ⊕ Yn+1 = (X ⊕ ΣY )n

with differential
d(x, y) = (dX(x) + (−1)n+1φ(y), dY (y))
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One of the main properties of this complex is that f is a quasi-isomorphism if and only if
H∗(Cone(f)) = 0 (see for example [Weib]).

We consider the complex Cone(f); it has an obvious filtration induced by the filtration
on A, B and C, and

grCone(f) = grC ⊕ Σ[gr(A⊗̂B)] = grC ⊕ Σ[grA⊗ grB)] = Cone(grf)

Since grf is a quasi-isomorphism, this complex is acyclic. The lemma above implies that
its completion is acyclic, so Cone(f) is acyclic, namely, f is a quasi-isomorphism.

3 Hochschild (co)homology: the one variable case

Let us denote Ψ = Ψ1, and x± = x±1. Notice that Ψ̂e = Ψ1⊗̂Ψop
1
∼= Ψ1⊗̂Ψ1 = Ψ2. We also

use the letters y± = x±⊗ 1 and z± = 1⊗x± in Ψ1⊗Ψ1. Let W be the 2-dimensional vector
space W = Ke+ ⊕Ke− The main result of this section is the following:

Proposition 3.1. The complex

0 // Ψ2 ⊗ Λ2W
d1 // Ψ2 ⊗W

d0 // Ψ2
m // Ψ1 (1)

is a resolution of Ψ1 as Ψ1⊗̂Ψop
1 -module. The map m is the multiplication, and d0 and d1 are

determined by the rules

d1(e+ ∧ e−) = (y+ − z+)e− − (y− − z−)e+

and
d0(e±) = y± − z± ,

and Ψ1-linearity on the left and on the right. Explicitly,

d1

(∑
ijkl

aijkly
i
+y

j
−z

k
+z

l
−e+∧e−

)
=
∑
ijkl

aijkly
i
+y

j
−(y+−z+)zk+z

l
−e−−

∑
ijkl

aijkly
i
+y

j
−(y−−z−)zk+z

l
−e+

Proof. If one declares |e±| = 1 and |e+ ∧ e−| = 2 then this complex is canonically filtered
using the Bernstein filtration on Ψ2 and Ψ1, and the maps clearly preserve the filtration.
The associated graded complex may be identified with the Koszul complex

0 // K[y±, z±, y
−1
± , z

−1
± ]⊗Λ2W // K[y±, z±, y

−1
± , z

−1
± ]⊗W // K[y±, z±, y

−1
± , z

−1
± ] // K[x±, x

−1
± ] // 0

associated to the regular sequence {(y+−z+), (y−−z−)} in K[y±, z±, y
−1
± , z−1

± ], hence exact.
We identify K[y±, z±, y

−1
± , z−1

± ]/〈y+ − z+, y− − z−〉 ∼= k[x±, x
−1
± ] via the map z± 7→ x±, y± 7→

x±.The proof of the proposition follows from the Lemma above.

Corollary 3.2. The algebra Ψ = Ψ1 satisfies a Van den Berg duality property with trivial dualiz-
ing module, also called Calabi-Yau property for algebras.
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Proof. One way to prove this corollary is to compute HH•(Ψ,Ψe) using the complex (1),
getting Ψe in degree 2n and zero elsewhere, and then apply Van den Berg’s theorem
[VdB]; but also we can use this complex to compute homology or cohomology for a gen-
eral bimodule M , getting the following complexes:

• An homological complex, after applying M ⊗Ψe − and identifying M ⊗Ψe Ψe ⊗ V ∼=
M ⊗ V :

0 //M ⊗ Λ2W //M ⊗W //M // 0

The induced differentials are

d1(me+ ∧ e−) = (x+m−mx+)e− − (x−m−mx−)e+ = [x+,m]e− − [x−,m]e+

d0(me+ +m′e−) = x+m−mx+ + x−m
′ −m′x− = [x+,m] + [x−,m

′]

• A cohomological complex, after applying HomΨe(−,M) and identifying HomΨe(Ψe⊗
V,M) ∼= V ∗ ⊗M :

0 //M //W ∗ ⊗M // Λ2W ∗ ⊗M // 0

and, in dual bases e+ ∧ e−, e+, e−, the differentials are

d0(m) = [x+,m]e+ + [x−,m]e−

d1(me+ +m′e−) = ([x+,m]− [x−,m
′])e+ ∧ e−

So, after convenient change of signs and reflecting degrees, we can identify the differen-
tials in homology with cohomology; we conclude that H•(Ψ,M) ∼= H2−•(Ψ,M) for all
M .

Theorem 3.3. The Hochschild homology and cohomology of Ψ with coefficients in Ψ are given by

HH0(Ψ) = K, HH2
∼= Λ2W

HH1(Ψ) = Kx−1
− e

+ ⊕Kx−1
+ e− ∼= HH1(Ψ)

HH2(Ψ) = K
1

x+x−
e+ ∧ e−, HH0(Ψ) = K

Proof. We know that the center of Ψ is K, this computes HH0 and, using duality we get
dimHH0 = 1. Also it is well known (and easily computable) that Ψ/[Ψ,Ψ] = Kx−1

+ x−1
− ,

so one knows HH0 and by duality HH2. It remains to compute HH1. One can do it
directly from the complex (1), but we can also compute using the isomorphismHH1(Ψ) =
Der(Ψ)/Innder(Ψ). The second computation will be carried out later; it has the advantage
that it gives a standard representative, the “operator” [log x±,−].

Lemma 3.4. The cup product in H•(Ψ1,Ψ1) is non-zero.
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Proof. Let L± =′′ [log x±,−]′′ be the derivation determined by

L+(x+) = 0, L+(x−) = − 1

x+

L−(x−) = 0, L−(x+) =
1

x−

The cup product is defined in the standard complex by the rule (L+ ^ L−)(a ⊗ b) =
L+(a)L−(b), as a map Ψ⊗Ψ→ Ψ. for instance

(L+ ^ L−)(x− ⊗ x+) = − 1

x+

1

x−

(L+ ^ L−)(x+ ⊗ x−) = 0

Since we work with a smaller complex, in order to compute the product of our cohomol-
ogy classes we need a comparison map between the small complex and the standard one.
In one direction it is not hard, we look at the resolutions:

· · · // Ψ⊗Ψ
⊗3 ⊗Ψ // Ψ⊗Ψ

⊗2 ⊗Ψ // Ψ⊗Ψ⊗Ψ // Ψ⊗Ψ // Ψ

0 //

OO

Ψ⊗ Λ2W ⊗Ψ //
� ?

OO

Ψ⊗W ⊗Ψ //
� ?

OO

Ψ⊗Ψ // Ψ

and we can show directly that the inclusion W → Ψ and Λ2W → Ψ⊗Ψ (the second maps
w1 ∧ w2 7→ w1 ⊗ w2 − w2 ⊗ w1), extend linearly on the left and on the right, giving maps
Ψ ⊗W ⊗ Ψ → Ψ ⊗ Ψ ⊗ Ψ and Ψ ⊗ Λ2W ⊗ Ψ → Ψ ⊗ Ψ⊗2 ⊗ Ψ, that actually give rise to
a complex map. The point is that the difference between w1w2 and w2w1 is a scalar, so it
is zero in Ψ. As those maps lift the identity, they must be a homotopy equivalence. It is
clear that the comparison map gives the corresponding restrictions, namely, if D : Ψ→ Ψ
is a derivation (i.e. a cocycle in the standard complex) then it corresponds to the element
D|W ∈ Hom(W,Ψ), for example, L+ corresponds to − 1

x−
e− and L− to 1

x+
e+. We need to

show that the class of L+ ^ L− 6= 0. But

(L+ ^ L−)(x+ ⊗ x− − x− ⊗ x+) = − 1

x+

1

x−

so L+ ^ L− corresponds to− 1
x+x−

e+∧e−, which is not zero since it is actually a generator
of H2(Ψ1,Ψ1).

4 Hochschild (co)homology: the n-variable case

In this short section we compute the Hochschild cohomology of Ψn using our Künneth
formula (Corollary 2.2) and Theorem 3.3 on the one variable case.
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Theorem 4.1. The Hochschild cohomology of Ψn with coefficients in Ψn is isomorphic to Λ•Dn

as graded algebra, where Dn is the 2n-dimensional vector subspace of Der(Ψn) generated by
[log xi±,−]. The Gerstenhaber bracket is trivial.

Proof. First, remark that Ψn = Ψn−1⊗̂Ψ1, so the associative algebra structure of HH•(Ψn)
is a consequence of the Künneth formula and Lemma 3.4. Once we know that cohomol-
ogy is generated in degree one, we only check that HH1 is an abelian Lie algebra. This is
a very easy computation, for instance, in one variable, writing L± := [log x±,−] one can
easily check that

[L+, L−](a) =

[
∞∑
n=1

x−n+ x−n−
(n− 1)!2

, a

]
Namely, this is not zero in Der(Ψn), but it is inner, so it is zero in H1(Ψn,Ψn).

5 The Lie Cohomology of Ψn

In this section we prove that H1
Lie(Ψn,Ψn) (i.e. Lie derivations Ψn → Ψn modulo inner

derivations) is the 2n+1 dimensional vector space spanned by [log x±i,−] and a particular
derivation called f0. This result is essentially due to Dzhumadil´daev, [D], but our work
in previous sections allows us to give a proof which we consider much more transparent
than the one appearing in [D]. Lemma 5.1 and 5.2 below are proven in [D] with enough
detail.

Lemma 5.1. Let ϑ denote the element ϑ := x−1
1+ · · ·x−1

n+x
−1
1− · · · x−1

n−. Then Ψn = [Ψn,Ψn]⊕Kϑ. If
one denotes f0 the map Ψn → K defined by f0(ϑ) = 1 and f0(xI+x

J
−) = 0 for all other monomials,

then f0 is a derivation with respect to the Lie bracket. Observe that f0 is not a derivation with
respect to the associative product.

Lemma 5.2. As Lie algebra, [Ψn,Ψn] is generated by x−1
±1 · · ·x−1

±n and
〈
xI+x

J
− : I, J ∈ Zn≥0

〉
.

Let φ be a derivation of Ψ as Lie algebra, then

φ(x+1) =
∑
nm

anmx
n
+1x

m
−1

with anm formal series on the variables x2±, . . . , xn±. Since

[
∑
nm

bnmx
2
+1x

m
−1, x+1] =

∑
nm

mbnmx
n
+1x

m−1
−1

then, except for the term corresponding to x−1
−1, all other terms (of φ(x+1)) can be written

as the bracket of an element with x+1, hence, modulo inner derivation, we may assume
that

φ(x+1) =
∑
nm

anx
n
+1x

−1
−1
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Using the relation
[x−1, x+1] = 1

and that every derivation preserves the center, we have

[φ(x−1), x+1] + [x−1, φ(x+1)] = D(1) = c ∈ k

If one writes
φ(x−1) =

∑
nm

cnmx
n
+1x

m
−1

then ∑
nm

cnmmx
n
+1x

m−1
−1 +

∑
n

annx
n−1
+1 x

−1
−1 = c ∈ k

This equality implies two facts: first, every term withm 6= 0 must be zero, and so φ(x−1) =∑
n cnx

n
+1, and secondly, if n 6= 0 then also an = 0, that is φ(x+1) = ax−1

−1.
Notice that if we change φ by φ̃ := φ + [

∑
n dnx

n
+1,−], (with dn formal series in the

other variables) then φ̃ takes the same value at x+1, but changes the value of φ(x−1) by
adding [

∑
n dnx

n
+1, x−1] =

∑
n ndnx

n−1
+1 , so we see that we can choose dn in such a way that

this new value is zero, except eventually the term with power −1. That is, modulo inner
derivation we have

φ(x+1) = a+x
−1
−1, φ(x−1) = a−x

−1
+1

with a± series in variables different from x±1. As immediate consequence of this and the
relation [x−1, x+1] = 1 is that φ(1) = 0. Another consequence is, assuming that φ take
those values, taking i 6= 1 and the other relations [x±1, x±i] = 0, we have

[φ(x±1), x±i] + [x±1, φ(x±i)] = 0

Let us write
φ(x±i) =

∑
nm

b±,nmx
n
+ix

m
−i

where the b’s are series in the variables different from i. We get

0 = [a±x
−1
∓1, x±i] + [x±1, φ(x±i)] = [a±, x±i]x

−1
∓1 +

∑
nm

[x±1, b±,n,m]xn+ix
m
−i

But for any series b, writing b =
∑

n bnx
n
+1 with bn independent of x+1, we have as before

[
∑

n bnx
n
+1, x−1] =

∑
n nbnx

n−1
+1 so there is no term with x−1

+1; we conclude that [x±1, b] can
never be of the form ax−1

∓ (with a a series independent of x±1). This implies two things:
first

[a±, x±i] = 0

namely, that a± are constants, and second

[b±,nm, x±1] = 0

that is, the b±,n,m’s -and consequently φ(x±i)- do not depend on x±1. With this result we
argue by induction and we conclude the following statement
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Lemma 5.3. Modulo inner derivations, all Lie derivations take the values

φ(x±i) = a±ix
−1
∓i

with a±i ∈ k.

Corollary 5.4. Modulo inner derivations and the set of derivations {[log xi±,−]}i, every Lie
derivation vanishes on xi±.

Remark 5.5. The assignment {
x+ 7→ +x−
x− 7→ −x+

induce a well defined isomorphism of associative algebra F : Ψ1 → Ψ1 that one can call
the Fourier transform. Even thought it is not strict necessary to introduce this transform
for the proof of next result, it helps simplifying the arguments.

Corollary 5.6. HH1(Ψn) is the 2n dimensional vector space generated by {[log xi±,−]}i.

Proof. If D is an associative derivation, then in particular it is a Lie derivation, and the
Lie-inner derivations are also associative derivations, so modulo {[log xi±,−]}i (notice
that these are associative derivations) we have that D vanishes on the xi±. But if D is an
associative derivation and vanishes on the xi± then D = 0. We conclude that the log’s
generate HH1(Ψn). We need to see that they are linearly independent. But considering Fi
the Fourier transform with respect to the variable xi, we have that D±j := log x+j± log x−j
are all eigenvectors of the Fi, with different eigenvalues, so they are l.i.

Remark 5.7. This corollary finishes the proof of Theorem 4.1.

Lemma 5.8. Let D : Ψn → Ψn be a derivation with respect to the Lie bracket, if D(x±i) = 0 (and
D is continuous with respect to the filtration) then D is a scalar multiple of f0.

Proof. First recall D(1) = D[x+i, x−i] = [Dx+i, x−i] + [x+i, Dx−i] = 0. Also, for i 6= j

0 = [x±j, x
n
+i]⇒ [x±j, Dx

n
+i] = 0

that is, D(xn+i) only depends on x±i, but using 0 = [xi, x
n
+i] we get that D(xn+i) only de-

pends on x−i. Also

[x−i, x
n
+i] = nxn−1 ⇒ [x−i, D(xn+i)] = nD(xn−1

+i )

but because D(xn+i) only depends on x−i, it follows that the bracket on the left is zero. We
conclude D(xn+i) = 0 for n 6= −1. By a symmetry argument (using Fourier transform) we
conclude the same for xn−i.

Also, for j 6= i, x−1
±i commutes with x±j , and so D(x−1

±i ) depends only on the variables
x±i. Using that x−1

+i commutes with xi, we have that D(x−1
+i ) commutes with x+i, that is,

depends on x−i, but from
[x−i, x

−1
+i ] = −x−2

+i
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and the fact that D(x−2
+i ) = 0 it follows that D(x−1

+i ) is constant. Let us denote Ei := x+ix−i,
we know D(Ei) = 0 and [Ei, x

−1
+i ] = −x−1

+i , so

0 = [Ei, const] = −const

hence D(x−1
+i ) = 0. By Fourier considerations we also have D(x−1

−i ) = 0.
For an arbitrary differential operator, we argue by induction on the sum of the total

degrees, namely, we consider a monomial of type

w = xn1
+1x

m1
−1x

n2
+2x

m2
−2 · · ·x

nk
+kx

mk
−k

(with mi and ni non negatives). We know that [w, x±i] is a monomial with total degree
strictly smaller, and so, by inductive argument D[w, x±i] = 0, and also it is equal to
[Dw, x±i], so we conclude that D(w) is constant. Using

[xn+x−, x+x
m
− ] = (1−mn)xn+x

m
− −

1

2
mn(n− 1)(m− 1)xn−1

+ xm−1
+ + · · ·

We compute (assume n1 > 1)

[xn1−1
1 x−1, x+1x

m1
−1x

n2
+2x

m2
−2 · · ·x

nk
+kx

mk
−k ] = (1−mn)xn+x

m
−x

n2
+2x

m2
−2 · · ·x

nk
+kx

mk
−k

−1

2
mn(n− 1)(m− 1)xn−1

+ xm−1
+ xn2

+2x
m2
−2 · · · x

nk
+kx

mk
−k + · · ·

Because of depending on one variable, or because of having smaller exponent, we con-
clude that D vanishes on monomials corresponding to differential operators of nonnega-
tive total degree, hence, D vanish on An.

Now we know D vanishes on An and x−1
i± , using 5.2 we conclude that D vanishes on

[Ψn,Ψn].

Now we can conclude the following statement:

Theorem 5.9. The HH1(Ψn,Ψn) is 2n-dimensional generated by log xi+, log xi− for i = 1, ..., n.
Moreover, H1

Lie(Ψn,Ψn) is (2n + 1)-dimensional generated by log xi+, log xi− (i = 1, ..., n) and
f0.
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