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Abstract

Many studies assume stock prices follow a random process known as geometric Brownian motion. Although approximately
correct, this model fails to explain the frequent occurrence of extreme price movements, such as stock market crashes.
Using a large collection of data from three different stock markets, we present evidence that a modification to the random
model—adding a slow, but significant, fluctuation to the standard deviation of the process—accurately explains the
probability of different-sized price changes, including the relative high frequency of extreme movements. Furthermore, we
show that this process is similar across stocks so that their price fluctuations can be characterized by a single curve. Because
the behavior of price fluctuations is rooted in the characteristics of volatility, we expect our results to bring increased
interest to stochastic volatility models, and especially to those that can produce the properties of volatility reported here.
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Introduction

The first theoretical study of stock prices modeled price

differences as a simple random process – now commonly known

as a drunkard’s walk [1]. Although pioneering for its time, several

modifications to this model have been needed. First was the

realization that prices move in relative amounts rather than

absolute amounts, and that returns rather than price differences

should be modeled as a random process [2]. Next, several papers

showed that returns could not be described by a static Gaussian

process because the tails of the return distribution are too fat, i.e.,

large price fluctuations occur much too frequently [3,4].

Numerous studies have tried to characterize and explain this

phenomenon [5–10]. This is because understanding the probabil-

ity of large returns is very important for asset allocation, option

pricing, and risk management. In spite of this work, there is still no

accepted theoretical explanation for this feature [11]. Here we

present evidence that the non-Gaussian, fat-tailed shape of the

return distribution is explained by modeling returns as a random

process with a slowly fluctuating standard deviation (or volatility).

Previously, we have found that this model works well for several

stocks traded on the London Stock Exchange (e-print ar-

Xiv:0906.3841). Here we test the model using a larger collection

of stocks from different exchanges and different time periods. We

show that the return distribution for these stocks is similar in shape

and well-fit by the model, and we present evidence that the tail of

the distribution for each stock is determined by the properties of

volatility for that stock.

The idea that volatility fluctuations cause non-Gaussian returns

is not new – it was originally suggested several decades ago and is

known as the mixture-of-distributions hypothesis [4,12–15]. This

hypothesis can explain the non-Gaussian shape of the return

distribution, but it is unable to explain the apparent stability of the

distribution over longer time scales. To account for this stability,

others have suggested what is known as the stable Paretian hypothesis

– that returns are drawn unconditionally from a fat-tailed, stable

distribution [3,5,16]. Our model captures both the non-Gaussian

shape and the apparent stability of the return distribution by

assuming that volatility fluctuations are significant over long time

scales but relatively small over short time scales. The model can be

summarized as follows: On any single day, returns are well

described by a Gaussian distribution. Across days, weeks, and

months, however, slow but significant fluctuations in volatility

produce returns with different standard deviations. When

collecting returns from each of these periods into one plot, the

return distribution no longer looks Gaussian, but is fat-tailed. The

distribution keeps this shape when aggregating returns over longer

time scales because volatility is slowly varying. Because this process

occurs in a similar way across stocks, the distribution of returns for

different stocks collapse onto one curve.

The results we present are produced using a large amount of

data (of the order of 107 data points) from three stock markets over

three time periods: the London Stock Exchange (LSE) from May

2, 2000 to December 31, 2002, the New York Stock Exchange

(NYSE) from January 2, 2001 to December 31, 2002, and the

Spanish Stock Exchange (SSE) from January 2, 2004 to December

29, 2006. These time periods partially overlap for the NYSE and

LSE data and are different for the SSE data. The time

discrepancies are due to obtaining data from different sources,

and the results we present appear robust over these differences.

For each market, we study two highly traded stocks that are from

different market sectors: AstraZeneca (AZN) and Vodafone (VOD)
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from the LSE, International Business Machines (IBM) and

General Motors (GM) from the NYSE, and Telefónica (TEF)

and Banco Santander (SAN) from the SSE. We consider the

electronic markets for these stocks during normal trading hours,

and we measure returns whenever the mid-price of a stock

fluctuates. This approach allows us to study returns on the finest

possible time scale. When aggregating returns over longer time

scales, we use non-overlapping intervals. We measure price

fluctuations, or returns, in the standard way [6] as

rt tð Þ~ln ptzt{ln pt, where p is the mid-price, t is the time

(which we update by one unit whenever the price changes), and t
is the time increment. Because time is updated whenever the price

changes, it is a measure of the number of events that have

occurred and not a measure of ‘calendar’ or ‘clock’ increments.

Analysis

To model the features of the return distribution, we use a

general approach that assumes a Gaussian process for its

dynamics. The probability distribution of returns is therefore [17]

p r,tjbð Þ~
ffiffiffiffiffiffiffiffi
b

2pt

r
exp {

br2

2t
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: ð1Þ

This is coupled with a slow variation of the inverse variance

b:1
�

s2, where s is the volatility, Sr2 tð ÞT~s2t. By slow

variation, we mean that b fluctuations are negligible compared

to price fluctuations when observed over the time scales we study

here – up to one trading day. This is not inconsistent with shocks

to volatility as long as those shocks are relatively infrequent.

Others have reported systematic fluctuations in intraday volatility

(see [18] and references within), but these fluctuations closely

mimic trading activity within the day. Because we probe returns

over a fixed number of return causing events, fluctuations in

trading activity are removed from the analysis.

b fluctuations over time scales longer than one day can be

characterized by a probability distribution g bð Þ. Several papers

have stated different functional forms for the distribution of

volatility [6,13,14]. We propose – and the evidence presented here

supports our assumption – that g :ð Þ is similar across stocks and

close to a gamma distribution
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There are several simple explanations for why the inverse

variance might have this distribution [19,20].

A straightforward integration of the conditional probability of

returns, p r,tjbð Þ, and the distribution g bð Þ yields the following for

the return distribution:
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which is a variant of the Student’s t-distribution. The non-

Gaussian shape of the distribution results from collecting returns

from time periods separated by long intervals where b is different.

The stability of this shape for short to intermediate t results from

negligible fluctuations of b over these time scales.

Although it is known that a gamma distributed inverse variance

leads to a Student’s t-distribution for returns [13,15], this result

does not explain how the return distribution retains its non-

Gaussian shape for longer time scales. To explain the persistence

of the non-Gaussian shape, others have suggested that returns

follow a fat-tailed stable distribution [3,5,16]. In Eq. 3, we address

both the non-Gaussian shape and the apparent stability of the

return distribution – both result from the properties of volatility

that we have assumed in our model.

Other papers have reported that returns follow a Student’s t-
distribution and have fitted returns to a generic version of this

distribution (see [6,13,15] for examples). In the results we present

below, we do not fit a Student’s t-distribution, but instead compare

the empirical distribution to the predicted distribution as expressed

in Eq. 3 and as determined by the independent measurement of b0

and n. This specifically tests the model rather than the more

general result that returns follow a Student’s t-distribution.

Results

In Fig. 1, we show the time collapse of the complementary

cumulative distribution (ccd) of absolute scaled returns, C jr’jð Þ
with r’~r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b0= ntð Þ

p
, for the stock IBM (the ccd is the integral of

the probability function). The ccd is plotted for t~10 to t~640,

which is up to one trading day for the stocks in our study. We show

this plot in logarithmic coordinates to focus on the tails of the

distribution, and we overlay the plot with the ccd of the theoretical

distribution from Eq. 3. As seen, the model matches the data well

and the shape of the distribution is stable over these time scales.

The parameters b0 and n are determined using a maximum

likelihood fit of b to a gamma distribution, where b is measured

once per day. In the inset of this figure, we show the ccd of b
compared to the fit. Although not shown, these plots are very

similar for the other stocks in our study.

The above model assumes that the functional form of the return

distribution is similar across stocks, and that differences are due to

the particular properties of volatility for each stock. This is verified

in Fig. 2, where we show the collapse for all stocks using the

following functional transformation, derived from the analytical

Figure 1. Collapse of the complementary cumulative distribu-
tion (ccd) of absolute scaled returns, C((jjr’’jj)), for the stock IBM.
The ccd is shown for times scales t~10 to t~640. The solid black line is
the theoretical ccd using b0~1:28|107 and n~4:40 from fitting b to a
gamma distribution. Inset: ccd of the slow fluctuating variable b for IBM,
the red curve is the empirical ccd and the solid black line is a fit to a
gamma distribution.
doi:10.1371/journal.pone.0008243.g001
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results presented above:

f r’ð Þ~ LP r’,tð Þ½ �
2

nz1, ð4Þ

where L~
ffiffiffiffiffiffi
2p
p

C n=2½ �=C nz1ð Þ=2½ �. Notice that Fig. 2 shows not

only the collapse of the distribution across stocks but also the

normal transport explicitly suggested by Eqs. (1,3) and observed in

Fig. 1.

Finally, in Fig. 3, we focus on the probability of large returns and

compare the tail of the observed distribution to that of the predicted

distribution for each stock. For this figure, we measure the slope of

the tail of the empirical ccd (in logarithmic coordinates) using the

Hill estimator [21] on the largest five percent of the data. We do this

for t~10,20,40,80,160,320 and average the results (we do not

include t~640 because there are too few data points to get a

reliable estimate at this time scale). This is compared with the slope

of the tail from the predicted distribution in the same region. The

measured values are in good agreement with our predictions,

showing a pronounced variation across stocks that is explained by

our model. This indicates that the likelihood of extreme price

movements is determined by the parameters b0 and n, obtained

from fitting b to a gamma distribution for each stock.

Discussion

We have presented evidence that the non-Gaussian shape and

stable scaling of the return distribution are due to slow, but

significant, fluctuations in volatility. Furthermore, our results

suggest that return distributions for stocks from different

exchanges, time periods, and over different time scales can be

described by one functional form. Because we have only studied

well-known stocks from liquid exchanges, it is unknown if this

apparent universal behavior for liquid stocks will carry over to

stocks that are infrequently traded.

Since the behavior of price fluctuations is rooted in the

characteristics of volatility, we expect our results to bring increased

interest to stochastic volatility models [22], and especially to those

that can produce a gamma distributed b [19,20,23,24] (also e-print

arXiv:physics/0507073). Such models can provide important

insight into the fundamental mechanism that underlies price

fluctuations.
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during this project; and J. A. Pérez from the Sociedad de Bolsas for data

from the SSE.

Author Contributions

Conceived and designed the experiments: MAF AG JV. Analyzed the data:

MAF AG JV. Wrote the paper: MAF AG JV.

References
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