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The evolution of developmental patterning
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Of considerable interest are the evolutionary and developmental origins of complex, adaptive
structures and the mechanisms that stabilize these structures. We consider the relationship
between the evolutionary process of gene duplication and deletion and the stability of
morphogenetic patterns produced by interacting activators and inhibitors. We compare the
relative stability of patterns with a single activator and inhibitor (two-dimensional system)
against a ‘redundant’ system with two activators or two inhibitors (three-dimensional
system). We find that duplication events can both expand and contract the space of patterns.
We study developmental robustness in terms of stochastic escape times from this space, also
known as a ‘canalization potential’. We embed the output of pattern formation into an
explicit evolutionary model of gene duplication, gene loss and variation in the steepness of the
canalization potential. We find that under all constant conditions, the system evolves
towards a preference for steep potentials associated with low phenotypic variability and
longer lifespans. This preference leads to an overall decrease in the density of redundant
genotypes as developmental robustness neutralizes the advantages of genetic robustness.
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1. INTRODUCTION

Complex phenotypes evolve through the genetic modifi-
cation of developmental programmes (Carroll 2001).
Developmental programmes consist of temporally vary-
ing patterns of gene expression generating networks
comprising protein—protein, protein—nucleic acid and
nucleic acid-nucleic acid interactions (Wolpert 2002).
Research in the evolution of development (evodevo) seeks
to determine the genetic causes of phenotypic variability,
identify enhancers or filters of genetic variation and
understand how mutation, selection and drift modify
developmental programmes (Gerhart & Kirschner 1997).
One important mechanism for generating variation
across generations is gene duplication, deletion and
divergence (Ohta 1987). The preservation of newly
duplicated genes is thought to depend initially on some
form of redundancy—increasing the robustness of pheno-
types—with a subsequent establishment of novel protein
function (for areview, see Krakauer & Nowak 1999) or the
differential degeneration of a multifunction protein with
complementary functions in a paralogue preserving the
duplicates (van Hoof 2005). Studies of genetic duplication
are not typically related to the dynamics of development.

One general class of mechanism for generating
variable patterns of gene expression and cell differen-
tiation during the course of development involves
heterogeneous diffusion rates of autocatalytic and
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inhibitory enzymes (Meinhardt 1982). The best
known of these are the Turing-type, diffusion-driven
instabilities (Turing 1952). The Turing mechanism
proposes a minimal model for generating periodic
inhomogeneities in morphogen concentrations along a
spatial domain. While the relevance of a strict Turing
mechanism for understanding development has been
questioned, some elements of the diffusive process are
clearly essential for establishing spatial patterning
(Meinhardt 1992).

Previous theories seeking to explore the consequences
of genetic duplication and redundancy on long-term
genetic variability, project genotypes onto viability
values and emphasize the pleiotropic or regulatory
structures leading to the preservation of duplicated
genes (Nowak et al. 1997). In this paper, we consider
explicitly a developmental dynamics alongside dupli-
cation. One advantage of including an explicit develop-
mental dynamics is to better characterize the range of
genetic variation under which phenotypes are expected to
remain invariant, and provide an intuition for the long-
term stability of phenotypes. This relates to a long-
standing question in development about how, over the
course of days to years, morphological variation is
constrained within a range of adaptive function. Some
of the earliest work in this area is due to Waddington who
wrote about the process of genetic canalization whereby
developmental mechanisms buffer against genotypic
and phenotypic noise (Waddington 1957). More
recently, there has been a growing interest in the many
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mechanisms of genetic and phenotypic robustness
(De Visser et al. 2003).

Redundancy arising through gene duplication is an
important mechanism of robustness by allowing for
continued function following perturbations through
correlated activity of system constituents, although
only a subset of duplicates confer this property
(Wagner 2000; Zhang 2003; Ay & Krakauer 2006;
Thmels et al. 2007). Genetic duplication is thought in
the short term to produce two, identical functional
genes capable of substitution in case one gene should be
lost. Genes do not however contribute independently to
phenotypes but do so through complex interactions.
Phenotypes are the outcome of epistatic protein net-
works, and hence duplication need not simply double the
range of parameters over which a system remains viable.
To determine the precise stability benefits of gene
duplication, it is necessary to model explicitly or measure
experimentally the developmental process.

We consider the following problem: given a diffu-
sively driven pattern-forming system dependent on
some number of variables, what changes are introduced
following the duplication of one or more variables? We
shall refer to the original system as ancestral, consisting
of singleton ancestral genes, and the modified system as
derived with duplicated genes. The set of duplicate
genes are known as paralogues. The parametric space of
solutions under duplication, all of which manifest
periodic Turing patterns, is known as the Turing
space (Murray 1982). In the results that follow, we
seek to characterize the volume of Turing space
following morphogen duplication, and determine the
evolutionary consequences of mutation for residence
time in the Turing space. We consider evolutionary
dynamics via a quasi-species formalism which includes
stationary developmental probabilities derived from a
homeostatic developmental model operating at a faster
time scale. We do not consider the equally important
implications of variation in the spatial scale and system
geometry on stability (Crampin et al. 1999).

2. THE MODEL: TURING INSTABILITY
WITH NOISE

The developmental model we adopt for analysis is the
reaction diffusion equation system first proposed by
Turing (1952). In this system, we consider the stability
of fixed points and the persistence of pattern formation.
Start with a minimal Turing two-dimensional field
system with mutational noise terms that exhibit
pattern formation,

d,u = f(u,v) + Vu, (2.1)

d,v = g(u,v) + dV>u, (2.2)

where u and v are the concentration of activator and
inhibitor proteins; d is the diffusion coefficient; and f(-)
and g(-) are the general nonlinear functions. These
equations are subject to the boundary conditions

(n-V)(Z) =0,0n 9B, u(r,0), o(r0), (2.3)
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where 9B is the closed boundary domain B and n is the
unit outward normal vector to 0B.

Four conditions are necessary for stability and
patterning: two conditions for the stability of the fixed
points and two for spatial instability, i.e. instability of
some k wavevector in the Fourier representation. These
conditions are (see appendix A for details):

— stability of the stationary state
fu 9, <0,

fugv - fvgu >0

(2.4)
(2.5)

— instability of the homogeneous state for some k>0

df, + g,> 0, (2.6)

(dfu + g’u)2 _4d(fugu - fugu) > 0.

Here f; and ¢; (i=wu, v) are the first derivatives of the
functions fand g evaluated at the fixed point. The size of
the spatial domain wherein the reactions take place is
assumed to be large enough to support the wavelength of
the unstable mode. These are very familiar inequalities in
the patterning literature ( Nicolis 1995). It is important to
be aware that while patterning is guaranteed by the above
inequalities, the shape (frequency and amplitude) of the
patterns can be different within this space, and will be
related to the diffusion parameter and the saturation
processes determined by the choice of kinetics.

In order to analyse the robustness of the two-field
system including mutational fluctuations, we introduce
noise assuming that it acts upon the dynamical terms of
the inequalities (2.4)—(2.7). The assumptions behind this
type of noise are less restrictive than additive noise—it
captures not only external fluctuations but also internal
fluctuations engendering structural dynamical changes,
via f(-) and ¢(-), in the vicinity of the stable state.

From the preceding inequalities, we observe that
there will be a domain, Q, where f,, f,, ¢, and g, can
fluctuate preserving the inequalities given by (2.4)—(2.7).
For example, if we fix f, and f,, then the derivatives g,
and g, can fluctuate in the plane (g, g,), within the
interior of the region defined by the three points p;, po,
and ps, given by

(2.7)

d 2
= <_dfu7_ .fft)’ (28)

2
P2 = <_fu7_a%>7 (29)

2
P3 = (_ﬁ47_f_z>7 (210)

where
2

a=%, a>1. (2.11)

The two-dimensional region of stability is given by a
triangle of increasing width with increasing values of f,,
the rate of autocatalytic activity and decreasing f,, the
inhibitor production.
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Figure 1. Schematic illustration of the interactions among
morphogens in a three-component system. Solid lines,
interactions in the ancestral system; dashed lines,
derived interactions with a duplicated inhibitor; dotted lines,
interactions between the two inhibitors. Autocatalytic
interactions, both positive and negative, are represented
with curved arrows. The instance of a duplicated activator is
not shown. Variables (partial derivatives) are defined in
§§2 and 3.

3. SYSTEM WITH A REPLICA FIELD
3.1. Stability in the homogeneous state

To capture the impact of genetic duplication of a
morphogen, we replicate one component of the system.
The generalized stability matrix for the expanded
system of equations becomes

o fo To
O

This introduces the new interactions: u—w and v—w.
These are represented in figure 1, where the activator
and inhibitor are nodes in the graph and kinetic
interactions are described by edges. The solid edges
represent the ancestral interactions, whereas the dotted
lines arise through duplication and are derived.

The conditions for stability of the fixed point (not the
patterned state) are

fu+ 9, + 0, <0, (3.2)
fugv - fvgu + fuhw - hufw + gvhw - gwhv > 07 (33)

fugvhw - fvguhw + fwguhv - fugwhv + fvgwhu - fwgvhu <O0.
(3.4)

From these inequalities, we observe that the following
characteristics are added by the duplicated gene.
Condition (3.2) acts as a constraint on h,. Under
conditions leading to the inequality (2.4) not being
satisfied, the parameter h, can by assuming negative
values render condition (3.2) fulfilled. Kinetically this
implies a greater constraint on w near the fixed point. In
general, only non-autocatalytic reactions involving the
replica component in the three-field system will be more
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robust in the homogeneous state. We also observe that
the first two terms of equations (3.2) and (3.3) are
identical to inequalities (2.4) and (2.5). The additional
terms arising from the new interaction pertain to u—w and
v—w. The final inequality describes the mixed interaction.

3.2. Spatial instability in the extended system

Previously we have analysed the stability conditions for
the matrix S, at the homogeneous steady state. When
spatial instability is taken into account, the stability
matrix includes perturbation terms,

Sp=S—k’D, (3.5)

where k is the wavevector associated with the Fourier
decomposition of the fields u, v, and w, and D is the
diagonal matrix characterized by its diagonal values:
Dy =1, Dyy=d5 and Ds3=dj.

To ensure instability and hence patterning for some
k>0, we require that the real part of the dominant
eigenvalue Sp calculated for the expanded stability
matrix is positive. This condition is met when a number
of inequalities derived from the characteristic poly-
nomial are satisfied. The inequalities make use of the
following functions:

Fy(k) = Fio+ F k" + F k' + Fi 6k°,  (3.6)
or
FQ(k) = F270 + F272k72 + F2,4k747 (37)
with
Fl,() = fugvhw - fvguhw + fwguhv - fugwhv + fvgwhu

- fwgvhw

F1,2 =- d3(fugv_f'ugu) - dZ(fuhw - hufw) -
F1.4 = d3(d2fu + g'v) + d2hwa
F1,6 = —dyds,

(gvhw_ gwhv)7

and

FQ,() = (fugv_fvgu +fuhw - h’ufw + gvhw - gwhv)v

F2,2 = d?(fu + hw) + Gy + d3(fu + gv) + hwa
F2,4 =—dy— dy— dpds.

We are interested in the critical instability threshold
and find this by looking for one real part positive
eigenvalue near zero. The relevant quantity in this case
will be the point at which F;(k) becomes positive. In
order to achieve spatial instability, the function F
should present a maximum greater than zero for some
value of k.

We require that at least one of the two following
inequalities is true:

Fi >0, (3.8)
Fi >0, (3.9)
and the following two inequalities are true:
Fi(ky,)>0 (3.10)
with k,, such that
Fi(k,) = 0. (3.11)
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These are general results that apply to any three-
dimensional system. In §§3.3.1 and 3.3.2, we shall
substitute into these expressions results pertaining to
particular morphogens.

3.3. Specific replicated systems

Here we consider the impact of duplication of either the
inhibitor or the activator. We consider these indepen-
dently, as they contribute to the kinetics differently and
can thereby cause both an expansion and a contraction
of the space of stable solutions and stable patterning.

8.3.1. Inhibitor. We consider an inhibitor replicated
without error and introduce the new variable w, with
potential interactions: w-w, u—w. The ancestral
interactions remain unchanged u—v. We set the deriva-
tives near the stationary state to

Py ™~ Gu (3.12)
f’w ~f'l)’ (3'13)
Dy ~ G- (3.14)

The inequalities for the stability of the fixed point will
be given by (primes indicate the duplicated components

)
f,+g,+49,<0, (3.15)
fu9o = Fo9u + fu9o = Fogu + 9090 — 90Dy >0, (3.16)
fu9090 = 129090 + Fo9ul0 = fuguho + £.9090 = F2 909, < 0.
(3.17)

For the fixed point, since the inhibitor must have a
positive rate of decay, the duplicated inhibitor will also
have a negative derivative g, <0. This increases the
stability values of the first inequality in relation to the
ancestral state and allows for greater fluctuation in g,
and f,. For the second and third inequalities, we can
demonstrate this effect more clearly by collecting some of
the terms of the inequalities into the variables A and B.
The inequalities have the form f,g, — f,9, + A — g h, >
0 with A> 07 and fugv - .ﬁ)gu-’_ Bl hv + B2.gw + BS +
Bygyh,> 0 with By~ By and B;>0 (i=1, ...,4), under
no change of sign of the ancestral variables. Once again
the duplication of the inhibitor has the effect of
expanding the range of values that the ancestral
variables can experience without loss of the fixed point,
as this increases likelihood that the two-dimensional
inequality f,g, — f,9, > 0 is fulfilled.

To determine whether we observe patterns, we need
to look at the inequalities defined by the functions F7,
with =0, 2, 4, 6. The region of spatial instability
(patterns formation) associated with duplication of the
inhibitor is reduced as a result of the negative sign of g,
acting on F} 4. If the diffusion constants are large, and
the duplicated components preserve their ancestral
diffusion coefficients (i.e. d=dy=4d3), then from the
requirement that Fy4>0 we find that for sufficiently
large values of d we require that f, —O(1/d) > 0.

3.3.2. Activator. In this section, we perform the same
analysis as above, but instead consider duplication of the
activator. The duplicate element gives the following first
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derivatives at the stationary points:

G ™~ Gu» (3.18)
hy, ~ £, (3.19)
Py ~ fo- (3.20)

This gives rise to the following inequalities for the
stationary solution:

fu+ g, + 1,<0, (3.21)
fugv - fv.gu + fuf?j - hufw + g?)f;; - g1l1f1: > Oa (322)

The activator duplication creates an additional con-
straint, g, <—(f, + f.), which when not satisfied elimin-
ates the stability of the homogeneous state. The second
inequality, including the aggregated variables A and B, as
in the previous case describing the inhibitor, has the
form (f,9, — f,9.) + A1 — hofy + A3 > 0 with A;>0 and
Ay ~ (fu9,— fu9.) >0, as we assume approximately
perfect duplication. This implies that h,f, < A, + A,
increases the domain of stability for the fixed point.
The structure of the third inequality is given
by (fug’u - fugu) - Bl.fu) - BQhu + BS + B4fwhu < 07 with
By~ B and By, By, B3>0 under no change of signs of the
variables. These are the constraints acting on (f,, h,)
which increase the range of permissible fluctuations
preserving the fixed points of the system. For the
patterning solution, and for large diffusion constants,
the spatial instability increases as a result of the positive
sign of f,, acting on F 4.

8.8.8. Summary of duplication results. For the two
specific cases described above, analysing the effects of a
redundant inhibitor and a redundant activator, we see
that the functional consequence in terms of stability of
either the fixed point or the patterning solution is far
from redundant. Redundant inhibitors decrease the
Turing space but increase the range of values promoting
stability for the fixed point. Redundant activators
increase the Turing space but decrease the range of
values promoting stability for the fixed point. A stable
fixed point is a necessary precondition for patterning,
and so it is not trivial to determine which of these two
duplication events will make the greater contribution to
robust patterns. This will depend on the nature of the
fluctuations, in particular the variables that are most
influenced by the noise. We also find that duplication
can preserve a stable solution assuming that there is
some degeneration of the ancestral morphogen and some
complementation by the derived paralogue. Hence,
duplication can promote stability by either expanding
a stable basin of attraction or by preserving a basin when
the kinetics of duplicate morphogens are perturbed in
opposing or ‘complementary’ directions.
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4. DEVELOPMENTAL ESCAPE TIME FROM
TURING SPACE

As we have observed, duplication can lead to an increase
in the concentration or variety of morphogens. Formally
this adds dimensions in the phase space. This expansion
introduces the possibility of a large increase in the
corresponding parameter space (as every edge in the
reaction graph is associated with a kinetic constant) and
to changes in the volume of stable patterning. We have
not explained however what drives the values of the
elements of the stability matrix into the patterning
region. Typically this will be explained in terms of a
mutation selection process, whereby natural selection
filters out variants with properties placing them outside
of an adaptive, patterned phenotype. It would be more
accurate however to consider evolution as having
established robustness mechanisms that allow adaptive
states to be restored during development when they are
locally perturbed.

In this section, we map the dynamics of ontogenetic
errors acting on morphogen kinetics onto a stochastic
process describing developmental canalization. Pre-
viously we considered these errors in terms of general
linear perturbations of the elements of the stability
matrix as a means of characterizing regions of patterning
in the phase plane. Here we model the fluctuation in the
mean value of the dynamical parameters in S using
Gaussian white noise £(¢). We consider a homeostatic
dynamic such that any deviation in the stationary values
of the stability matrix tends to be driven back to their set
points. The strength of this homeostatic process is
modulated by the value of an evolutionary parameter +y.
This parameter is a coarse-grained variable capturing a
suite of mechanisms all able to dampen intrinsic sources
of noise (the evolution of v is treated in §5).

We introduce an equation that describes each of the
fluctuating variables in the duplicated system,

z; = —y(z;— mp) +E(2), (4.1)
where z; stands in for any of the derivatives in the matrix
S. Thus, what is fluctuating randomly are the depen-
dencies of the morphogens on each other.

Such a functional form can be interpreted in a
straightforward way as describing an escape processes
from a quadratic, attractive single-well potential. The
steepness of the potential is governed by the value of v,
which captures evolved properties of the enzyme kinetics
capable of dampening fluctuations. This can be thought
of as the strength of homeostasis. The stable/patterned
phenotypes lie within the space shown in figure 2,
whereas the non-stable /patterned phenotypes lie outside
the space.

To describe the effect of noise, the dynamically
fluctuating functions can be associated with a one-
dimensional random walk, related to a coordinate =,
under an attractive potential U(z). The equation of
motion for the probability p(z, t) of this particle, equation
(4.1), is described using the Fokker—Planck equation,

2
dp_9 [U'(z)p(z, t)] + D%p(w, t),

= 4.2
Jdt  dz (4.2)
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AUsp Ao

U'txy=vy

Figure 2. Canalization potential illustrating the regions of
attraction for patterned phenotypes within which the kinetics
of the morphogens can fluctuate without losing adaptive
pattern. The coordinate x measures the value of the
components of the matrix S. The coordinate AU measures
the energetic distance from the optimal configuration. AQ
measures the increase in the width of the potential contrib-
uted by the duplicate. I' is the boundary of the potential
defined by the ancestral system.

where p(z, t) is the probability of finding the particle at
position zat time t; U’ (z) = yzis the first derivative of the
potential; and D is the diffusion parameter. The position
of the Brownian particle in the selective potential
determines the value of the dynamical linear term (near
the fixed point) of the system plus the replica field.

Here we are assuming D is constant (a constant rate of
developmental noise), whereas the diffusion term could
depend on the state of the system, i.e. D= D(z).

We consider the neutral region @ of parameters in
the Turing space where the system can diffuse without
loss of stability /patterning. Increases in the volume of
Turing space correspond as a first approximation to
stretching the borders of the canalization potential
leaving the topological structure within the basin as it
was in the ancestral (low-dimensional) state. We can
expand the potential’s border, I', as

U(z,t) =Ziw(m—r).

nl 0z" (4.3)

For any of the chosen variables susceptible to
fluctuations, we can calculate the escape time, 7, or
time taken to randomly walk out of the potential into a
region without pattern, as the Kramer time,

7 o exp|A Usp] o« exp[A Uyplexp[U'(I')AQ)], (4.4)

where AUsp (AUsp) is the potential barrier for the two
(three)-element system. We find that an increment AQ in
the volume of the parameter space leads to an exponential
increase in the escape time (time for the system to lose
stability and k-instability properties) from the canaliza-
tion potential. Thus, gene duplication events expanding
the Turing space (such as duplication of an activator) can
have an exponential impact on the robustness of
phenotypes to fluctuations in say the binding or catalytic
properties of the morphogens. It should be stressed that
we are defining robustness in binary terms—pattern or no
pattern, and it could be the case that variation in the
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pattern is important. If this were the case, then the
adaptive value of the pattern could be lost before the
system escaped from the canalization potential.

5. EVOLUTIONARY DYNAMICS OF
TURING SPACE

In §§3 and 4, we have analysed the impact of morphogen
duplications on the volume of stable, patterning steady
states. We subsequently determined how long, assuming
stochasticity in morphogen behaviour, it takes for
patterns to be lost when these phenotypes are canalized.
Here we couple the fast time scales of development
and canalization to the slower time scale of evolutionary
change.

We consider explicitly the dynamics of duplication
and deletion of morphogen genes and continuous
mutational variation in the value of v within an adaptive
dynamics framework. We ask what happens to the value
of v when we allow it to evolve on a genetic background
of non-redundant and redundant genotypes.

For simplicity, we consider two genome configu-
rations according to the number of copies of morphogens
that they encode—two or three—an ancestral state, Xop
and a derived, duplicate state, X3p. Both states are
associated with a value of the canalization parameter 7.

The haploid evolutionary dynamics of the morpho-
gens are described by a coupled system,

Xop = rXop — 1 Xop + o Xsp —e %7 Xop

— Xop(rXyp + 1/1X5p), (5.1)
Xyp = 1/rXsp + 1 Xop — poXsp —e VO Xy
— Xsp(rXyp +1/rX5p), (5.2)

where r modulates the relative rate of growth; u
determines the rate of duplication, and u, deletions;
and ¢ = F(Q) is a parameter capturing the volume of the
Turing space. The final bracketed terms are the flux
terms that contribute density-dependent regulation to
the dynamics. The parameter ¢ is essentially a measure
of the reciprocal of the volume of the space of patterning
derived from the single-well potential in §4. The
parameter vy tunes the steepness of the canalization
potential. From §§3 and 4, we consider those cases of
duplication where the duplicated morphogen expands
the Turing space, such that ¢ <1. This model has three
separated time scales: the fastest time scale is given by
the Turing system; the next fastest is the duplication and
deletion dynamics; and the slowest time scale describes
the evolution of v.

This system has three steady states, only two of which
are of interest (have non-negative densities), one of
which is the trivial steady state at zero. We denote the
positive steady as X(v)sp and X(7y)sp and include the
variable v in the argument holding all other parameters
constant.

In order to determine whether the steady state value
of v is stable, we ask whether a rare mutant with a value
of v/ =+ + ¢ can invade into the steady-state population.
To do so, we consider the linearized system consisting of
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the wild-type system at steady state (A(y)) and a rare v’
mutant. We now track the densities of the mutant
genotypes, Xjp, and X;p:

., o
fi=Xop = rXop — i Xop + ua Xip —e = Xop

f=Xip =1/rXip + w Xop — ta Xip
_671/¢7/X3D —XéDA(’Y)a (5-4)

where A(y)=rX(v)op+ 1/7X(7v)sp. This system has a
single equilibrium at zero. For invasion, we consider the
sign of the dominant eigenvalue A; of the stability matrix
(J) at the zero equilibrium of the mutant

ofi  Ofi

6Xyy 0Xip
J =

0, Ofy

06X, 60X,

_ (T_Ml_e_dwl_A(V) M2 )
13} 1/7”_M2_el/¢y/_A(7)

(5.5)

We find that A, >0<> vy’ >v. This states that any
mutant that experiences an increase in the value of vy
relative to that of the wild-type will increase in frequency
when rare. Intuitively, an increase in the value of v leads
to an increase in the expected lifetime of the genotype.
This result has been confirmed for a larger system of
equations where we allow for N discrete values of v, and
track the densities of the 2N, Xég and Xég variables.
This allows to confirm fixation of the mutant and not
only invasion.

Whereas the value of v is strictly increasing under
adaptive dynamics, the consequences on the abundance
of the two genotypes can be fairly complex. A few results
are shown in figure 3. At low values of y>0 when
developmental noise is large, the redundant genomes
(three-dimensional) have the advantage in terms of
increased expected lifetimes. As the value of v increases,
the relative difference in the death rates decrease, and
the slight advantage that the two-dimensional system
derives from carrying fewer genes (r>1) is enough to
allow it to outcompete the three-dimensional system.
When the rate of duplication is greater than the rate of
deletion, the redundant, three-dimensional, genome is
able to maintain an advantage over a greater range of
values of y. Clearly the upper bound on the value of 7y is
going to determine whether the redundant or non-
redundant genome dominates in the population and any
extrinsic increase in noise, effectively decreasing the
value of v, is going to favour redundancy.

6. DISCUSSION

Genotypes have evolved many mechanisms for increas-
ing the robustness of phenotypes, from simple dupli-
cations of genes to more elaborate mechanisms of repair
and error buffering. In this paper, we have shown that
simple duplication cannot guarantee increased
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Figure 3. Steady-state densities of non-redundant (two-dimensional) and redundant (three-dimensional) genomes as a function
of the canalization parameter v. Parameter values: (a) r=1.5, ¢=10"", uy=5X10"2 u,=5X10"? and (b) r=1.5, ¢=10"",

w1 =5X1073, uy=5x10"2

robustness, sometimes it reduces robustness. This is a
consequence of the dynamics of regulation. Furthermore,
when there are several mechanisms of robustness
evolving, we can observe that one mechanism dom-
inates, and the additional, redundant mechanisms can
be neutralized. We have explored these ideas with an
idealized model of development, the Turing model, and
an idealized model of evolution, replicator dynamics.

We consider a space of stable, developmental pattern,
the Turing space. This space is defined as that volume in
parameter space of a dynamical system capable of
generating diffusion-driven inhomogeneities. We have
explored the consequences on the volume of Turing
space of duplicating morphogens in the simple case of
one duplicated morphogen. We have also analysed a
simple homeostatic model including parameter fluctu-
ations in order to calculate escape times from Turing
space over the course of development. We use the escape
time from the developmental model to parameterize the
death rate in an evolutionary model describing the
adaptive dynamics of canalization in the presence of
morphogen duplication and deletion. We arrive at the
following conclusions.

(i) Duplication of a morphogen can lead to either a
contraction of the Turing space—increasing the
likelihood that random fluctuations impinging on
morphogens lead to a loss of patterning—or an
increase in the space. Expansion is associated
with duplication of activators and contraction
with duplication of inhibitors.

(ii) While activators and inhibitors have positive and
negative influences on the stability of pattern,
they contribute inversely to the stability of
the non-spatial, steady state. Activators reduce
the domain of stability and inhibitors increase the
domain of stability.

(i) An additional benefit of duplicates arises when
the ancestral morphogen is mutated and the
duplicate can maintain the pattern through
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compensation. Under these conditions, the
degeneration of a morphogen function can be
complemented by a suitable modification of its
derived paralogue.

(iv) In the duplicated activator system, the space of
unstable wavevectors increase. This is due to the
fact that the degree of the polynomial function
associated with the linear stability analysis is
smaller in the ancestral system. This will have
implications for the diversity of patterned states,
with a potentially greater number of patterns in
the duplicated system.

(v) Assuming that patterned phenotypes are cana-
lized, a linear increase in the volume of Turing
space corresponds to an exponential increase in
the residence time in adaptive patterning in the
presence of developmental noise.

(vi) When the degree of canalization is free to evolve,
this evolves to its maximum value, corresponding
to a large reduction in the variance of phenotypes
and a significant increase in the expected lifetime.

(vii) The increase in developmental canalization leads
to a reduction in the advantages accrued through
genetic redundancy, causing non-redundant
genotypes with slight growth advantage to out-
compete redundant genotypes.

It is often assumed that gene duplication is an
important mechanism of robustness by promoting
functional redundancy. This assumption rests on a
simple model of gene interaction in which two identical
genes are indistinguishable from one gene. In reality,
genes interact to promote phenotypic patterns and
interactions are unlikely to be linear. We have shown
through a simple developmental process that duplication
can in fact reduce the robustness of a system to
mutations, by contracting the space of viable patterning.
In order for duplication to substantially increase the
space of viable patterning (the Turing space), the
derived duplicate should be an activator and
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preferentially one with an increased rate of decay than
the ancestral form. This result is somewhat counter-
intuitive as this would seem to correspond to a reduction
in protein function.

Force et al. (1999) have argued that an imperfect
duplication process is essential for preserving duplicates
and is described as a model of complementary,
degenerative mutation (CDM). Degenerative mutations
in regulatory sub-functions promote stability of dupli-
cates by functionally partitioning the expression of
alleles. In this way the partitions can come under
independent normalizing selection. This hypothesis has
received experimental support (van Hoof 2005). While
this is a related hypothesis to ours, it does not provide an
explanation for the expanded space of stability in our
models. In our results duplicates can be beneficial for two
reasons: (i) owing to the reduced sensitivity to develop-
mental noise and (ii) complementation of a function by
derived duplicates in response to a degenerate ancestral
function. Unlike the CDM model, we do not require that
the proteins are multifunctional.

In addition to increasing the robustness of patterning,
some duplicates allow patterns to be established more
readily. In other words, duplicate systems make the
patterned phenotype more accessible to small fluctu-
ations originating in the non-patterned state. Thus,
duplicates, under the right conditions, can both increase
the efficiency of evolutionary search and increase the
robustness of the patterned phenotype. This runs counter
to the intuition that increased accessibility should reduce
stability, as this might seem to imply easier loss.

Genotypes have evolved many mechanisms for
increasing the robustness of phenotypes, from simple
duplications of genes to more elaborate mechanisms of
repair and error buffering. We observe that several of
these mechanisms interact negatively, such that the
evolution of effective developmental canalization is able
to render simple genetic redundancy, redundant.

In summary, without an empirical or theoretical
model of development, it is not possible to determine
the influence of genetic duplication on the robustness
of phenotypes. As a result of nonlinearity and more
sophisticated mechanisms of repair, simple duplication
can reduce robustness as well as increase both the
accessibility and the robustness of phenotypic patterns.
While the Turing model is highly idealized, it provides
us with one formal means of integrating developmental
and evolutionary dynamics and makes testable predic-
tions about the incidence of duplicated patterning
genes. In particular, where we observe patterning
genes we expect that paralogues should typically
be activators.

APPENDIX A

Homogeneous and spatial instability can be analysed
using a standard linear stability analysis. Given the set of
equations (2.1) and (2.2), the homogeneous stability can
be determined by considering

U— Uy
w = y
V— Y

(A1)
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where (ug, 1g) is the stationary state. Then, near (ug, vp)
equations (2.1) and (2.2) become

(A2)

where S is the stability matrix defined in the text. The
solution will be of the form w o exp(At), where A is
the eigenvalue. Substituting this into equation (A 2) the
values of A will be given by

|§—AI| =0,

w=Sw,

(A3)

where I is the identity matrix. Inequalities (2.4) and
(2.5) arise from the previous expression and ensure the
stability of the homogeneous state, i.e. R[A] < 0.

In the case of spatial instability, near the steady state,
we find for equations (2.1) and (2.2)

10
dyw = Sw + DV*S, Dzlo d]. (A 4)

The solution of this equation will have the form

w(r,t) = Z ¢ exp(At) Wi(r), (A 5)
[

where W(7) is the eigenfunction corresponding to the
wavenumber k and W(r) is solution of the time-
independent equation,

0 = Sw + DV:w (A 6)

subject to appropriate boundary conditions. As with the
case of the homogeneous solution, substituting the
function (A 5) into (A 4) determines the stability of a
given mode by reference to the sign of the root of the
characteristic polynomial

|S — DE* —AI| = 0. (A7)

Equations (2.5) and (2.6) are derived from the last
equality and ensure instability of a given mode &, with
k>0.
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